Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.

165320EN162938

Page 1 of 1

Test Report on Analysis of Adhesive

Information Supplied by Client

Client

: DGL Camel (Hong Kong) Ltd.

Client's address

22/F., 78 Hung To Road, Kwun Tong, Kowloon

Project

: Determination of Formaldehyde Content

Sample description

One sample of multi-purpose construction adhesive

Sample identification

Selleys Liquid Nails Upgraded Formula (Brown)

Test required

Formaldehyde content

Laboratory Information

Lab sample I.D.

EN162938/1

Date of receipt of sample:

15/11/2016

Date test completed

28/11/2016

Test method used

GB18583-2008 Appendix A

Results:

Sample identification	Formaldehyde content*
Selleys Liquid Nails Upgraded Formula (Brown)	Not Detected

^{*}Remark: The detection limit of Formaldehyde content is 0.05g/kg.

Supervised by : _

K.F. Wong

Certified by

Approved Signatory : HO Kin Man, John Manager – Chemistry Department

Date

** End of Report **

Ulimon

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.

165320EN162938(1)

Page 1 of 1

Test Report on Analysis of Adhesive

Information Supplied by Client

Client

: DGL Camel (Hong Kong) Ltd.

Client's address

22/F., 78 Hung To Road, Kwun Tong, Kowloon

Project

Determination of Formaldehyde Content

Sample description

One sample of multi-purpose construction adhesive

Sample identification

Selleys Liquid Nails Upgraded Formula (White)

Test required

Formaldehyde content

Laboratory Information

Lab sample I.D.

EN162938/2

Date of receipt of sample:

15/11/2016

Date test completed

28/11/2016

Test method used

GB18583-2008 Appendix A

Results:

Sample identification	Formaldehyde content*
Selleys Liquid Nails Upgraded Formula (White)	Not Detected

^{*}Remark: The detection limit of Formaldehyde content is 0.05g/kg.

Supervised by : K.F. Wong Certified by : Approved Signatory : HO Kin Man, John Manager – Chemistry Department

Date : MARKET DEPARTMENT

** End of Report *

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com.hk Website : www.materialab.com.hk

Report No.

154544EN151192

Page 1 of 2

Test Report on Analysis of Adhesive

Information Supplied by Client

Client

DGL Camel (Hong Kong) Ltd.

Client's address

22/F, 78 Hung To Road, Kwun Tong, Kowloon, Hong Kong

Project

VOC Test

Sample description

One sample of Multi-purpose Construction Adhesive

Sample identification

Selleys Liquid Nails Upgraded Formula (HK)

Batch: MD 050915 C004 EX0318

Test required

VOC content for adhesive

Laboratory Information

Lab sample I.D.

EN151192/1

Date of receipt of sample:

14/09/2015

Date test completed

30/09/2015

Test method used

USEPA Method 24 & SCAQMD Method 303-91

Calculated based on results of

a) Volatile content – USEPA Method 24 Section 11.3.1

& ASTM D2369-98

b) Water content – USEPA Method 24 Section 11.3.2

& ASTM D4017-96a

c) Coating density – USEPA Method 24 Section 11.3.3

& ASTM D1475-96

d) Exempt compounds - SCAQMD Method 303-91

Dilution ratio

: .

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail: matlab@fugro.com.hk Website: www.materialab.com.hk

Report No.

154544EN151192

Page 2 of 2

Results:

	Result
Volatile content (W _v), %wt	29.32
Water content (W _w), %wt	0.27
Exempt compounds (W _{ex}), %wt	3.14 (Acetone) 25.00 (Methyl Acetate)
Coating density (D _c) @ 25°C, g/ml	1.269
VOC content, g/L of adhesive, less water and less exempt compounds	19

Note:

Equation for calculation of VOC:

$$\begin{split} VOC &= (W_a - W_b - W_c) / (V_d - V_e - V_f) \\ &= [(W_a / W) - (W_b / W) - (W_c / W)] * W / V_d / (1 - V_e / V_d - V_f / V_d) \\ &= [(W_v - W_w - W_{ex})] * [D_c * 1000 / (100 - W_w * D_c / D_w - W_{ex} * D_c / D_{ex})] \\ &= (W_v - W_w - W_{ex}) * D_c * 1000 / (100 - W_w * D_c / D_w - W_{ex} * D_c / D_{ex}) \end{split}$$

where

W_a is weight of volatile compounds in grams (per unit of sample)

W_b is weight of water in grams (per unit of sample)

W_c is weight of exempt compounds in grams (per unit of sample)

W is weight of material in grams (per unit of sample)

V_d is volume of material in litres (per unit of sample)

V_e is volume of water in litres (per unit of sample)

V_f is volume of exempt compounds in litres (per unit of sample)

D_w is density of water in g/ml @ 25°C (i.e. 0.997072 g/ml)

Dex is density of exempt compounds in g/ml @ 25°C

Supervised by : K.F. Wong

Certified by

Approved Signatory: HO Kin Man, John Manager - Chemistry Department

10/2015

Date ** End of Report **

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com.hk Website : www.materialab.com.hk

Report No.

141530EN140563

Page 1 of 2

Test Report on Analysis of Adhesive

Information Supplied by Client

Client

DGL CAMEL (HONG KONG) LTD.

Client's address

6/F, CAMELPAINT CENTRE, NO:1 HING YIP STREET,

KWUN TONG, KOWLOON, HONG KONG

Project

VOC Testing

Sample description

One sample of Multi-purpose construction adhesive

Sample identification

Selleys Liquid Nails Upgraded Formula White

(MD220514, B010EX1116)

Test required

VOC content for adhesive other than PVC, CPVC, ABS pipe

cements and adhesive primer

Laboratory Information

Lab sample I.D.

EN140563/1

Date of receipt of sample:

30/05/2014

Date test completed

11/06/2014

Test method used

USEPA Method 24 & SCAQMD Method 303-91

Calculated based on results of

a) Volatile content - USEPA Method 24 Section 11.3.1

& ASTM D2369-98

b) Water content - USEPA Method 24 Section 11.3.2

& ASTM D4017-96a

c) Coating density - USEPA Method 24 Section 11.3.3

& ASTM D1475-96

d) Exempt compounds - SCAQMD Method 303-91

Dilution ratio

No dilution

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail: matlab@fugro.com.hk Website: www.materialab.com.hk

Report No.

141530EN140563

Page 2 of 2

Results:

	A CONTRACTOR OF THE PROPERTY O
	Result
Volatile content (W _v), %wt	32.35
Water content (W _w), %wt	0.04
Exempt compounds (W _{ex}), %wt	3.73 (Acetone)
	25.61 (Methyl acetate)
Coating density (D _c) @ 25°C, g/ml	1.238
VOC content, g/L of adhesive, less water and less exempt compounds	61
Management of the control of the con	

Note:

Equation for calculation of VOC:

$$\begin{aligned} VOC &= (W_{a} - W_{b} - W_{c}) / (V_{d} - V_{e} - V_{f}) \\ &= [(W_{a} / W) - (W_{b} / W) - (W_{c} / W)] * W / V_{d} / (1 - V_{e} / V_{d} - V_{f} / V_{d}) \\ &= [(W_{v} - W_{w} - W_{ex})] * [D_{c} * 1000 / (100 - W_{w} * D_{c} / D_{w} - W_{ex} * D_{c} / D_{ex})] \\ &= (W_{v} - W_{w} - W_{ex}) * D_{c} * 1000 / (100 - W_{w} * D_{c} / D_{w} - W_{ex} * D_{c} / D_{ex}) \end{aligned}$$

where

W_a is weight of volatile compounds in grams (per unit of sample)

W_b is weight of water in grams (per unit of sample)

W_c is weight of exempt compounds in grams (per unit of sample)

W is weight of material in grams (per unit of sample)

V_d is volume of material in litres (per unit of sample)

Ve is volume of water in litres (per unit of sample)

V_f is volume of exempt compounds in litres (per unit of sample)

D_w is density of water in g/ml @ 25°C (i.e. 0.997072 g/ml)

Dex is density of exempt compounds in g/ml @ 25°C

Supervised by : K.F. Wong Certified by

Approved Signatory: HO Kin Man, John Manager - Chemistry Department

Date

** End of Report